Physics-informed Reduced Order Modeling of Time-dependent PDEs via Differentiable Solvers

Nima Hosseini Dashtbayaz^{1,*}, Hesam Salehipour², Adrian Butscher², Nigel Morris²

¹Western University, ²Autodesk Research

*Research conducted during internship at Autodesk

TL;DR: Physics-informed Reduced Order Model

Φ-ROM is a physics-informed reduced order model (ROM) for time-dependent PDEs that learns the temporal dynamics from differentiable solvers.

Compared to Data-Driven ROMs, Φ-ROM:

- ✓ Generalizes better to unseen initial conditions and parameters,
- ✓ Forecasts beyond the training time-horizon,
- ✓ Is robust to irregular and sparse data,
- ✓ Is more data efficient.

 Φ -ROM is also more robust to various physical phenomena compared to other physicsinformed approaches (e.g. PINNs).

Overview

For PDEs of the following form,

 $\dot{u} = \mathcal{N}(u; \beta), \quad u(t, x) : \mathcal{T} \times \Omega \to \mathbb{R}^m,$

parameterized by β , a neural ROM generally:

 $u_{t_0} \xrightarrow{D^{\dagger}} \alpha_{t_0}$ 1. Encodes:

 $\alpha_{t_0} \xrightarrow{\Psi} \alpha_T$ 2. Forecasts:

 $\alpha_T \xrightarrow{D} u_T$ 3. Decodes:

> Fast and efficient simulation within a reduced manifold of solutions.

accurately model the latent dynamics consistent with the true physics.

Φ-ROM the learns latent dynamics directly from differentiable solver so that they are consistent with the physics.

 $\blacktriangleright \Psi$ is consistent with physics.

Results: Generalization, Forecasting, and Sparse Data

PDEs: (1) Diffusion, **(2)** Burgers', **(3)** N-S, **(4)** KdV, **(5)** LBM (bluff-body) Solvers: (1) FD, (2) FD, (3) FVM, (4) Spectral, (5) Lattice Boltzmann Baselines: DINo [1], CROM [2], PINN-ROM [3]

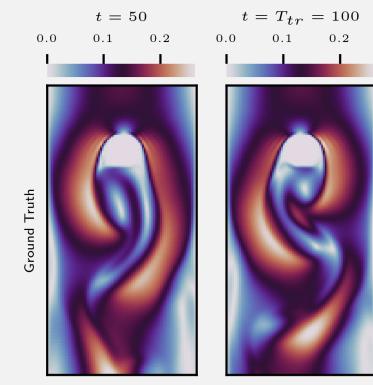
N-S & KdV: Forecasting for unseen initial conditions Compared to data-driven DINo:

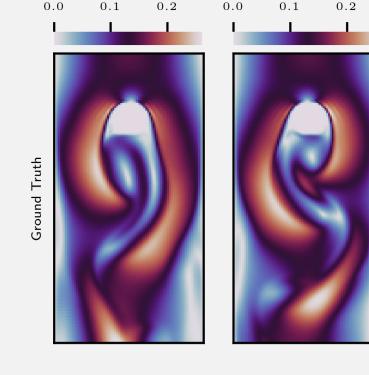
in-5 & Kdv: Forecasting for unseen initial conditions					
PDE	NS		KdV		4
Time	$ [0, T_{tr}] $	$\left[T_{tr},T_{te}\right]$	$[0,T_{tr}]$	$[T_{tr}, T_{te}]$	
Full Trair	ning	$\mathcal{X}_{tr} = \mathcal{X}_{\mathcal{S}} = \mathcal{X}_{te}$			•
Φ -ROM	0.170	0.373	0.233	0.486	
DINo	0.580	1.543	0.459	0.728	•
Sparse Training $ \mathcal{X}_{tr} =2\% \mathcal{X}_{\mathcal{S}} ,~\mathcal{X}_{te}=\mathcal{X}_{\mathcal{S}}$					
Φ -ROM	0.189	0.394	0.280	0.567	
DINo	0.594	1.517	0.902	1.396	

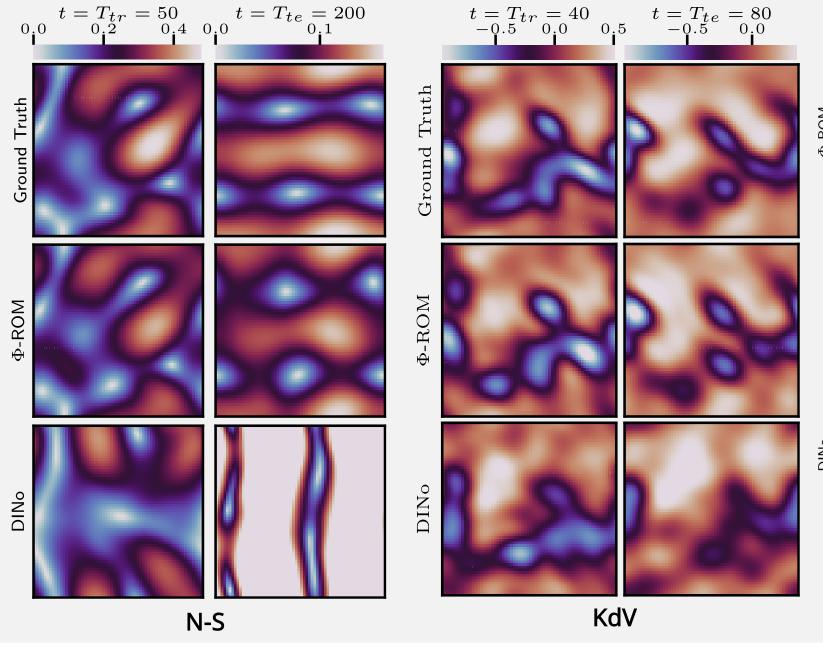
LBM: Generalization to OOD Reynolds numbers

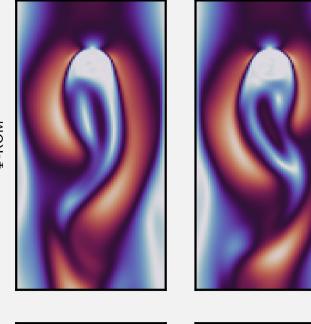
β	$\beta \in \mathbf{Re}_{tr} = [100, 200]$	$\beta \in \mathbf{Re}_{te} = [200, 300]$			
Full Train	ing $\mathcal{X}_{tr}=\mathcal{X}_{tr}$	$S=\mathcal{X}_{te}$			
Φ-ROM DINo	0.049 0.011	0.115 0.457			
Sparse Forecasting $\mathcal{X}_{tr}=\mathcal{X}_{\mathcal{S}}, \mathcal{X}_{te} =2\% \mathcal{X}_{\mathcal{S}} $					
Φ-ROM DINo	0.049 0.011	0.182 0.400			
Sparse Training $ \mathcal{X}_{tr} =2\% \mathcal{X}_{\mathcal{S}} ,~\mathcal{X}_{te}=\mathcal{X}_{\mathcal{S}}$					
Φ-ROM DINo	0.065 0.369	0.188 0.412			

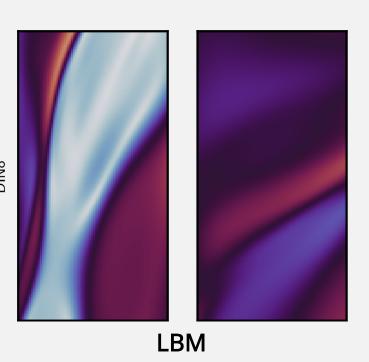
- ✓ Φ-ROM is more stable in time and extrapolates beyond the training time horizon.
- ✓ **Φ**-ROM generalizes better to unseen initial conditions and out-of-dist. parameters.
- ✓ Φ-ROM learns and forecast the dynamics from sparse observations (as low as 2% of the data).
- \checkmark Φ -ROM is robust to the underlying numerical method of the solver.



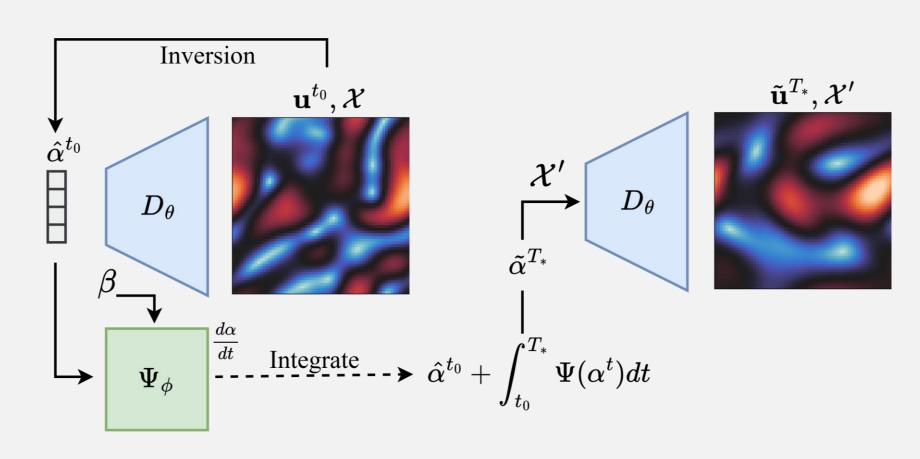








Φ-ROM Framework



 Φ -ROM has the same architecture as DINO:

✓ Mesh-free

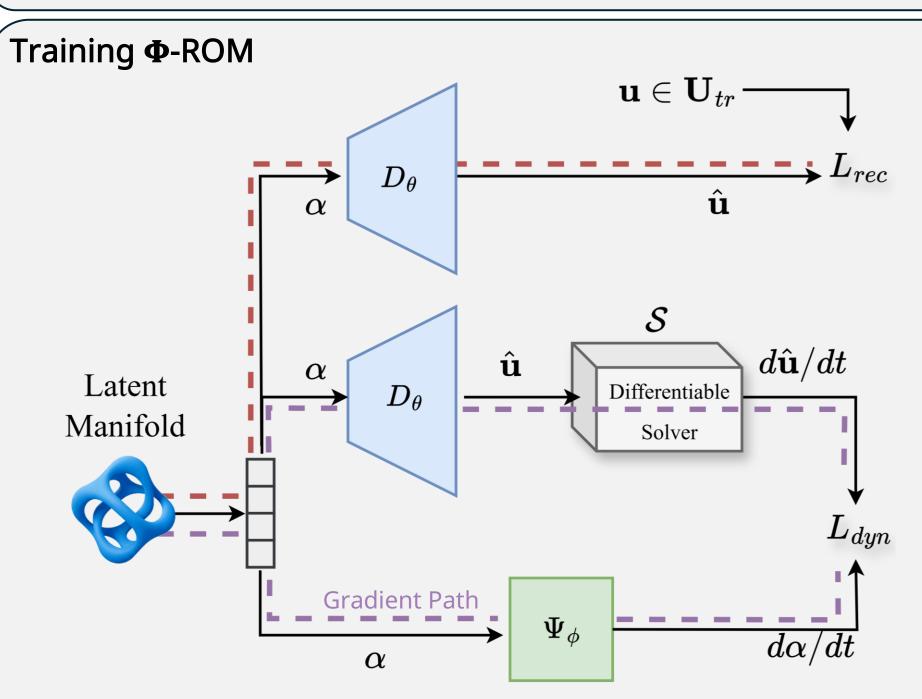
1. INR Decoder:

 $D(\alpha_t, \mathcal{X}) = \hat{\mathbf{u}}_t$

✓ Continuous in space

2. Dynamics network: $\Psi(\alpha) = d\alpha/dt = \dot{\alpha}$

✓ Continuous in time



For a latent coordinate α corresponding to snapshot ${\bf u}$ in the dataset:

1. Reconstruct:

 $D(\alpha) = \hat{\mathbf{u}}$

2. Get solver dynamics:

 $d\hat{\mathbf{u}}/dt = \mathcal{S}[\hat{\mathbf{u}}]$

3. Get latent derivatives: $d\alpha/dt = \Psi(\alpha)$

4. Take decoder Jacobians: $J_D(\alpha)\dot{\alpha} = d\hat{\mathbf{u}}/dt$

$$\longrightarrow \mathbf{L}_{dyn}(\alpha) = (\Psi(\alpha) - J_D^{\dagger}(\alpha)\mathcal{S}[\hat{\mathbf{u}}])^2$$

Minimize the dynamics loss along with a data reconstruction loss.

 \triangleright Since \mathcal{S} is <u>differentiable</u>, errors backpropagate through the decoder and regularize the latent solution manifold, while Ψ learns directly from \mathcal{S} .

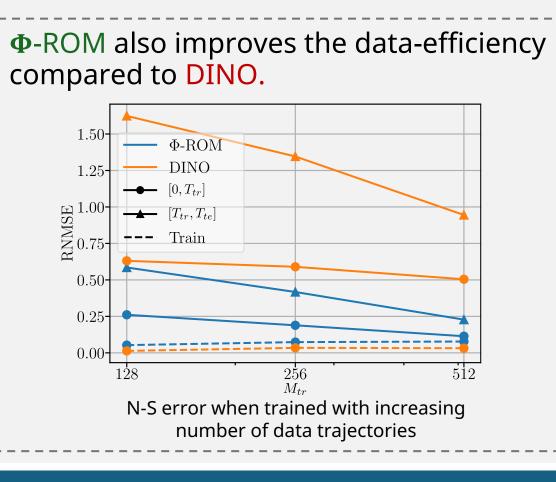
Results: Discretized Solver vs Continuous Physics, Data Efficiency

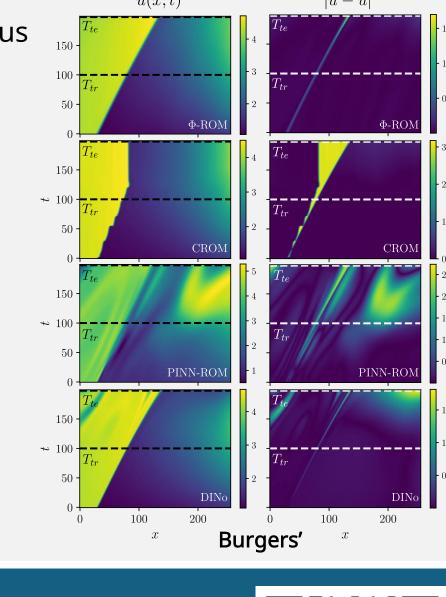
PINN-ROM and CROM use continuous physics along with auto-diff, while Φ -ROM incorporates the discretized physics embedded in a numerical solver.

 \triangleright Φ -ROM does not suffer from auto-diff inaccuracies.

 \triangleright Φ -ROM follows a <u>convergent discretization</u> scheme provided by the solver.

As a result, Φ-ROM is robust to various physical phenomena, such as shock waves.





References:

- [1] Yin, Yuan, et al. "Continuous pde dynamics forecasting with implicit neural representations."
- [2] Chen, Peter Yichen, et al. "CROM: Continuous reduced-order modeling of PDEs using implicit neural representations."
- [3] Kim, Minji, et al. "Physics-informed reduced order model with conditional neural fields."

nhosse5@uwo.ca